Title: | Regularized Exponentially Tilted Empirical Likelihood |
---|---|
Description: | Implements the regularized exponentially tilted empirical likelihood method. Details of the method are given in Kim, MacEachern, and Peruggia (2023) <doi:10.48550/arXiv.2312.17015>. This work was supported by the U.S. National Science Foundation under Grants No. SES-1921523 and DMS-2015552. |
Authors: | Eunseop Kim [aut, cph, cre], Steven MacEachern [ctb, ths], Mario Peruggia [ctb, ths] |
Maintainer: | Eunseop Kim <[email protected]> |
License: | GPL (>= 3) |
Version: | 0.1.0.9003 |
Built: | 2025-03-05 04:17:39 UTC |
Source: | https://github.com/markean/retel |
Computes exponentially tilted empirical likelihood.
etel(fn, x, par, opts = NULL)
etel(fn, x, par, opts = NULL)
fn |
An estimating function that takes the data |
x |
A numeric matrix, or an object that can be coerced to a numeric matrix. Each row corresponds to an observation. The number of rows must be greater than the number of columns. |
par |
A numeric vector of parameter values to be tested. |
opts |
An optional list with optimization options for |
A single numeric value representing the log-likelihood ratio. It contains
the optimization results as the attribute optim
.
Schennach, SM (2005). "Bayesian Exponentially Tilted Empirical Likelihood." Biometrika, 92, 31–46.
# Generate data set.seed(63456) x <- rnorm(100) # Define an estimating function (ex. mean) fn <- function(x, par) { x - par } # Set parameter value par <- 0 # Call the etel function etel(fn, x, par)
# Generate data set.seed(63456) x <- rnorm(100) # Define an estimating function (ex. mean) fn <- function(x, par) { x - par } # Set parameter value par <- 0 # Call the etel function etel(fn, x, par)
A dataset of median income for 4-person families by state.
data("income")
data("income")
A data frame with 51 rows and 6 columns:
States, including the District of Columbia.
Estimated median income for 4-person families in 1979 (standardized).
Estimated median income for 4-person families in 1989 (standardized).
Per capita income in 1979.
Per capita income in 1989.
Census median income in 1979, adjusted for per capita income (standardized).
https://www.census.gov/data/tables/time-series/demo/income-poverty/4-person.html
data("income") income
data("income") income
Computes regularized exponentially tilted empirical likelihood.
retel(fn, x, par, mu, Sigma, tau, type = "full", opts = NULL)
retel(fn, x, par, mu, Sigma, tau, type = "full", opts = NULL)
fn |
An estimating function that takes the data |
x |
A numeric matrix, or an object that can be coerced to a numeric matrix. Each row corresponds to an observation. The number of rows must be greater than the number of columns. |
par |
A numeric vector of parameter values to be tested. |
mu |
A numeric vector of parameters for regularization. See 'Details' for more information. |
Sigma |
A numeric matrix, or an object that can be coerced to a numeric matrix, of parameters for regularization. See 'Details' for more information. |
tau |
A single numeric parameter for regularization. See 'Details' for more information. |
type |
A single character indicating the type of regularized exponentially tilted
empirical likelihood. It must be either |
opts |
An optional list with optimization options for |
Let denote independent
-dimensional
observations from a complete probability space
satisfying the moment condition:
where is an estimating
function with the true parameter value
.
For a given parameter value , regularized exponentially
tilted empirical likelihood solves the following optimization problem:
where
and
Here, ,
,
are all tuning parameters that control
the strength of
as a penalty.
Once we have determined the solution , we define
the likelihood ratio function as follows:
where
and
. The reduced version of the likelihood ratio function is defined as:
See the references below for more details on derivation, interpretation, and properties.
A single numeric value representing the log-likelihood ratio. It contains
the optimization results as the attribute optim
.
Kim E, MacEachern SN, Peruggia M (2023). "Regularized Exponentially Tilted Empirical Likelihood for Bayesian Inference." doi:10.48550/arXiv.2312.17015.
# Generate data set.seed(63456) x <- rnorm(100) # Define an estimating function (ex. mean) fn <- function(x, par) { x - par } # Set parameter value par <- 0 # Set regularization parameters mu <- 0 Sigma <- 1 tau <- 1 # Call the retel function retel(fn, x, par, mu, Sigma, tau)
# Generate data set.seed(63456) x <- rnorm(100) # Define an estimating function (ex. mean) fn <- function(x, par) { x - par } # Set parameter value par <- 0 # Set regularization parameters mu <- 0 Sigma <- 1 tau <- 1 # Call the retel function retel(fn, x, par, mu, Sigma, tau)